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Abstract

The structure of the brain is a consequence of selective pressures and the ancestral brain structures modified by those
pressures. The Hymenoptera are one of the most behaviorally complex insect orders, and the olfactory system of honeybees
(one of the most derived members) has been extensively studied. To understand the context in which the olfactory system of
the Hymenoptera evolved, we performed a variety of immunocytochemical and anatomical labeling techniques on the
antennal lobes (ALs) of one of its most primitive members, the sawflies, to provide a comparison between the honeybee and
other insect model species. The olfactory receptor neurons project from the antennae to fill the entire glomerular volume but
do not form distinct tracts as in the honeybee. Labeling of projection neurons revealed 5 output tracts similar to those in moths
and immunolabeling for several transmitters revealed distinct populations of local interneurons and centrifugal neurons that
were also similar to moths. There were, however, no histaminergic or dopaminergic AL neurons. The similarities between
sawflies and moths suggest that along with the great radiation and increased complexity of behavioral repertoire of the
Hymenoptera, there were extensive modifications of AL structure.
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Introduction

The Hymenoptera are one of the most behaviorally diverse
and complex orders of insects. They encompass approxi-
mately 125 000 described species with an estimated
600 000 to 1.2 million species that have yet to be described
(Grimaldi and Engel 2005). The behavioral range of the
Hymenoptera includes herbivorous, parasitic, and colonial
forms and with these modifications in behavior have come
incredible changes in external structures that suggest that
the brains of these animals must also have undergone very
dramatic morphological shifts over evolutionary time.

One of the most extensively studied areas of the insect
brain is the antennal lobe (AL), which is the first synaptic
neuropil of the olfactory system and the equivalent of the
vertebrate olfactory bulb (Hildebrand and Shepherd
1997). The AL in most insects is modular in nature, com-
posed of many glomeruli which are synaptic neuropil com-
partments consisting of the processes of the olfactory
receptor neurons (ORNs) that convey information from

the environment to the AL, the projection neurons (PNs)
which transmit information from the AL to the rest of the
brain, the local interneurons (LNs) which project between
glomeruli and finally the centrifugal neurons that provide
feedback from the brain to the AL. The ALs of several spe-
cies of insect have been the subjects of extensive study, and
the ALs of each species differs from the others in terms of
their anatomical structure reflecting the influences of the se-
lective pressures that have resulted from the ecological niches
occupied by each species (reviewed by Galizia and Rossler
2009). Here, we have established the basal state for the
Hymenoptera that will serve as the foundation for the study
of the neural structures associated with the diverse array of
behaviors exhibited by this order.

The Hymenoptera can by divided up into 3 groups
(Figure 1A) based on general behavioral traits (although on-
ly one is monophyletic); the herbivorous Symphyta (of which
the sawflies are the most basal members), the Parasitica, and
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Figure 1 Phylogenetic tree depicting the phylogenetic relationships within
the Hymenoptera and images of Neodiprion larvae and adults. (A)
Phylogenetic tree of the Holometabola (complete metamorphosing insects)
depicting the phylogenetic relationships between the Symphyta, Parasitica,
and Aculeata. Tree is based on Grimaldi and Engel (2005) but is not drawn
to scale and is only intended to illustrate the relationships between groups.
(B) A late instar Neodiprion larvae displaying a defensive posture. (C) Several
Neodiprion larvae consuming needles from clippings of a Ponderosa pine
tree. (D) A pupal case from which an adult female emerged by cutting off
a cap. (E) Female (left) and male (right) Neodiprion adults. (F) The head of
a male Neodiprion highlighting the pectinate antennae. Preadsorption
controls in which rabbit anti-GABA antibody has been incubated in (G)
blocking medium or (H) 100 mM GABA in blocking medium before being
applied to Bombus impatiens tissue. Scale bars = 100 pm. Preadsorption
assays in which rabbit anti-dopamine antibody has been incubated in (1)
blocking medium or (J) 100 mM dopamine in blocking medium before
being applied to Manduca sexta tissue. Scale bars = 100 pm.

the stinging Aculeata (which include bees and ants). With
regards to AL structure, these groups are relatively internally
consistent, but their ALs differ markedly from each other in
terms of serotonergic (Rehder et al. 1987; Dacks et al. 2006;
Tsuji et al. 2007; Zube and Rdssler 2008; Nakanishi et al.
2010) and histaminergic innervation (Bornhauser and Meyer
1997; Dacks et al. 2010) suggesting that the different life-
styles of these insects were accompanied by changes in the
neural architecture of the ALs. The sawflies are the most
basal of the Hymenoptera and the Symphyta, and their life
histories are similar to moths in that the only parental care
exhibited involves the female laying eggs on a host plant.
This is in contrast to the Parasitica that lay their larvae in
the relatively more protected internal environment of a host
insect or the Aculeata many of which build nests for the rais-
ing of the young. To get a more extensive assessment of the
extent to which the ALs of the more derived Hymenoptera
(such as honeybees) have changed over evolutionary time
compared with other insect groups, we performed a suite
of anatomical and immunocytochemical assays to character-
ize the morphology of all 4 types of AL neurons (ORNSs,
PNs, LNs, and centrifugal neurons) of the sawflies Neodip-
rion ventralis and Neodiprion autumnalis. Our hypothesis is
that the ALs of sawflies will most closely resemble those
of moths due to their similar life histories and will differ sig-
nificantly from honeybees which have evolved a much more
complex life history compared with these basal-most mem-
bers of the Hymenoptera.

Materials and methods

Animals

Several hundred final instar N. autumnalis (Smith and
Wagner 1986) and N. ventralis (Ross 1955) (Figure 1B) were
collected from Ponderosa pine trees on Mt Lemmon, just
outside of Tucson, AZ. Because the individuals collected
for this study represent these 2 very closely related species
(Linnen and Farrell 2008) and were infesting the same
branches, we will refer to the sawflies in this study as Neo-
diprion from this point on under the assumption that there
are likely only very minor differences in the anatomy of their
ALs. Furthermore, because the results of our labeling tech-
niques were extremely consistent from animal to animal, we
feel confident in the validity of grouping individuals of these
2 species together for analysis. Larvae were reared on Pon-
derosa pine clippings (Figure 1C) placed in 50-mL centrifuge
tubes with water and held upright in a tube rack. The racks of
clippings were placed in a 1 X 1 x 1 m Plexiglas cage with
a | inch layer of soil to allow the larvae to burrow and form
cocoons (Figure 1D). Once all the larvae had pupated, the
pupae were collected and stored in pipette tip boxes until
adults emerged. Males and females (Figure 1E) were easily
distinguished based on coloration (females being light brown
and males being black), size (males being about 2/3 the length
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of females), and antennal morphology (males having broad,
pectinate antennae; Figure 1F). Adult sawflies were sacri-
ficed for tissue processing within 1-2 days after emergence
from their pupal case. There was an approximately 1:30
male:female ratio, thus female sawflies were used for all prep-
arations except where noted, specifically for antennal nerve
backfills (Figure 2B). Brains from a total of 104 adult
sawflies that had emerged between September 31st and
November 12th of 2009 were processed with a variety of
labeling procedures. The phylogenetic tree in Figure 1A is
based on Grimaldi and Engel (2005) but is not drawn to scale
with respect to evolution time.

Immunohistochemistry

The details of the hosts, sources, specificity assays, and dilu-
tions of primary antibodies are summarized in Table 1. Due
to the seasonal availability of the Neodiprion tissue, Bombus
impatiens and Manduca sexta AL tissue was used for the pre-
adsorption assays of antibodies for which preadsorption
assays had not previously been published. For the rabbit
anti-y-aminobutyric acid (GABA) antibody preadsorption,
primary antibody was incubated for 24 h in either blocking
medium (Figure 1G) or 100 mM GABA (Sigma) in block-
ing medium (Figure 1H), spun down, and then applied to
B. impatiens AL tissue as described below. For the rabbit
anti-dopamine antibody preadsorption assay, primary anti-
body was the incubated for 24 h in either blocking medium
(Figure 11) or 100 mM dopamine (Sigma) in blocking me-
dium (Figure 1J), spun down, and applied to M. sexta AL
tissue as described below. Both the GABA and dopamine
preadsorptions resulted in a total loss of labeling.

Two basic protocols were used for all the antibodies de-
scribed in this paper. The protocol described in Dacks
et al. (2005) was used for the dopamine and octopamine la-
beling. Brains were dissected in 0.1 M cacodylate with 10 g/L
sodium metabisulfite (SMB) and placed in a cold fixative of
0.1 M cacodylate, 2% paraformaldehyde, and 1% glutaralde-
hyde overnight at 4 °C. Brains were then washed in
phosphate-buffered saline (PBS), embedded in 5% agarose
(Sigma), and sectioned at 75 um with a vibrating microtome
(Technical Products International). Tissue was then washed
in a 0.05 M Tris buffer with 8.5 g/LL SMB (Tris-SMB; pH 7.4)
and then incubated in Tris-SMB with glycine (10 mg/mL) for
30 min. Tissue was then washed in Tris-SMB and incubated
for 2 days in primary antibody in Tris-SMB with 0.25% IgG
free bovine serum albumin (BSA; Jackson Immunoresearch),
0.25% Triton X-100, 1% normal goat serum, 3% low fat milk,
50 mM sodium azide. Sections were then washed in Tris buffer
with 8.5 g/LL sodium chloride (Tris-NaCl; pH 7.4) and incu-
bated overnight as above in either 1:1000 goat anti-rabbit
Cy3 (Jackson Immunoresearch) for dopamine-labeled tissue
or 1:1000 goat anti-mouse Cy3 (Jackson Immunoresearch)
for octopamine-labeled tissue. The following day tissue was
washed in the Tris-NaCl and then incubated for 10 min in
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60% glycerol and 40% water and then mounted on glass slides
in 80% glycerol.

For the remainder of the antibodies, a protocol based on
that published in Dacks et al. (2006) was employed. Brains
were dissected in insect saline and placed in 4% paraformal-
dehyde overnight at 4 °C with the exception of the histamine
immunocytochemistry in which brains were placed in a 4%
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (Sigma) in
PBS (pH 6.9) for 1 h at room temperature before paraformal-
dehyde fixation. Brains were then washed in PBS, then em-
bedded, and sectioned as described above. Sections were
washed in PBS with 0.5% Triton X-100 (PBST), blocked
for 1 h in PBST with 2% IgG free BSA, and incubated for
2 days in primary antibody in PBST with 1% Triton X-
100, and 50 mM sodium azide (PBSAT). Sections were then
washed in PBST, blocked as before, and incubated overnight
in 1:1000 goat anti-rabbit Cy3 in PBSAT. Sections were then
washed in PBST, cleared, and mounted as described above.

Mass fills

ORNs and PNs were backfilled as described in Dacks et al.
(2006). Briefly, a broken glass electrode coated in Texas red,
3000 MW (Molecular Probes, Invitrogen) was inserted into
either the antennae (for ORN labeling) or ALs (for PN la-
beling) of restrained adults and either antennae or head cap-
sules (respectively) were sealed with petroleum jelly for 24 h.
Brains were then dissected, fixed overnight in 4% parafor-
maldehyde, sectioned, cleared, and mounted as described
above.

Confocal microscopy

Sections of ALs were scanned using a Zeiss 510 Meta laser
scanning confocal microscope equipped with argon and
green HeNe lasers and appropriate filters. The Zeiss LSM
Image browser was used to create stacks of optical sections
to adjust contrast and brightness of individual images and to
perform cell and glomeruli counts. Images were organized in
CorelDraw X4. All images are presented in a “horizontal”
view with the anterior—posterior (anterior at the top of each
image) and medial-lateral axes visible, unless otherwise
indicated.

Results

ORNs

Retrograde dye fills of the antennal nerve resulted in labeling
of hundreds of ORNSs axons, which formed fascicles at the
base of the antennal nerve and innervated distinct glomerular
structures (44 + 2.7 standard deviation [SD], n =4; Figure 2A).
The male AL was almost 2 times the size of the female AL
(Figure 2B) due to an additional male-specific neuropil that
sat between the base of the antennal nerve and a set of glo-
meruli very similar to those in the female AL. This additional
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Table 1 Antisera used in this study

Antigen Host Source and first characterization or catalog number Specificity assays Dilution
Allatostatin Rabbit H. Agricola (Vitzthum et al. 1996) Vitzthum et al. (1996) 1:500
Corazonin Rabbit J. Veenstra (Veenstra 1991) Veenstra (1991) 1:500
Crustacean cardioactive peptide Rabbit H. Agricola (Agricola et al. 1995) Agricola et al. (1995) 1:500
Dopamine (DA) Rabbit Immunostar (# 22939) Figure 1G-H, this study 1:500
FMRFamide Rabbit E. Marder (Marder et al. 1987) Marder et al. (1987) 1:500
GABA Rabbit Sigma (# A2052) Figure 11-J, this study 1:500
Histamine (HA) Rabbit Immunostar (# 22230) Paulk et al. (2009) 1:500
Locustatachykinin Il (Lom-TK II) Rabbit H. Agricola (Nassel 1993) Nassel (1993) 1:500
Octopamine (OA) Mouse H. Agricola (Dacks et al. 2005) Dacks et al. (2005) 1:1000
Serotonin (5HT) Rabbit Immunostar (# 20080) Paulk et al. (2009) 1:5000

Figure 2 ORNSs of Neodiprion. (A) Horizontal section of a mass fill of the
ORNs in the antennae of a Neodiprion female highlighting the ORN
innervation of the AL glomeruli. Hatched box represents the border of the
high magnification view in (C). (B) High gain image of the AL of
a Neodiprion male highlighting the AL glomeruli as well as an additional
male-specific enlargement of the AL (bracket). (C) ORNs innervating a single
glomerulus of Neodiprion delineated by the hatched border. (D) The
antennal mechanosensory and motor center of Neodiprion highlighted by
mass fills of the mechanosensory neurons in the antennae. Hatched lines
delineate the border of the tritocerebrum on the left and the esophageal
foramen on the right. All scale bars = 50 pm.

neuropil may be a macroglomerular complex similar to those
found in moths (Christensen and Hildebrand 2002), but we
will refrain from referring to this structure as such without
further study of the physiological properties of the innervat-
ing neurons. The ORNs innervated the entire volume of the
glomerulus (Figure 2C) which was quite different from the

ORNs of honeybees, which innervate only the outer rind
of the glomerulus (Kirschner et al. 2006) and somewhat dif-
ferent from the ORNs of moths which innervate the distal
portion of the glomerulus (Oland et al. 1990). In addition
to filling ORNSs, the mass fills of the antennal nerve also
resulted in the labeling of the axons of mechanosensory hairs
projecting to the antennal mechanosensory and motor cen-
ter, which was located just posterior and ventral to the AL
(Figure 2D).

PNs

The labeling of hundreds of PNs via mass dye fills of the
ALs revealed axonal output tracts produced by PNs that
projected to the mushroom bodies and the lateral horn
(Figure 3). Neodiprion possessed 5 PN axonal output tracts
(Figure 3A-C.,F, and G) which were very similar to those of
M. sexta as described by Homberg et al. (1988) in terms of
their relative positions, sizes, and projections to the mush-
room body calyces and the lateral horn (Figure 3D,E, respec-
tively). The majority of the volume of the calyx was occupied
by the axonal terminals of the PNs, suggesting that the calyx
lacked a collar region receiving visual input from the optic
lobes as is found in ants and bees (Gronenberg 1999, 2001;
Gronenberg and Hélldobler 1999). Studies of the PN output
tracts of different species have generated several different no-
menclatures. Galizia and Rssler (2009) have proposed a uni-
fying nomenclature, which we will also use but will also make
reference to the nomenclature originally established for
Manduca (Homberg et al. 1988). The medial antenno-
protocerebral tract (mAPT and the equivalent of the inner
antenno-cerebral tract of Manduca) (Figure 3A) was the
largest of the 5 tracts extending first to the calyces and then
onto the lateral horn. The mAPT bifurcates to project
around the peduncle of the mushroom body with both
branches of the mAPT innervating the calyx (Figure 3A).
The medio-lateral antenno-protocerebral tract 1 (mlIAPT1
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Figure 3 AL PNs of Neodiprion. (A) Horizontal section of a mass fill of AL PN axons revealing the mAPTand mIAPT1. Both the dorsal and ventral branches of
the mAPT are visible projecting to the calyces of the mushroom bodies and the lateral horn. The mIAPT1 projects only to the lateral horn. (B) The axons of PNs
forming the IAPT project first to the lateral horn and then to the calyces. (C) The mIAPT2 and mIAPT3 appear to bifurcate, projecting to both the calyces and
the lateral horn. The synaptic boutons of AL PN axons from the various antenno-cerebral tracts highlight (D) the mushroom body calyces (bracket) and (E) the
lateral horn (bracket) of Neodiprion. (F) Schematic diagram of the more ventral antenno-protocerebral tracts projecting to the mushroom bodies (MBs) and
the lateral horn (LH). (G) Schematic diagram of the more dorsal antenno-protocerebral tracts. A, anterior; L, lateral.

and the equivalent of the medial antenno-cerebral tract)
did not project to the calyces but rather extended directly
to the lateral horn (Figure 3A.B). The lateral antenno-
protocerebral tract (IAPT and the equivalent of the outer an-
tenno-cerebral tract of Manduca) projected first to the lateral
horn and then to the calyces (Figure 3B). The mAPT,
mlAPT1, and the IAPT all projected from the AL to the lat-
eral horn and mushroom bodies at a similar plane with re-
spect to the dorsal-ventral axis of the brain. Finally, there
were 2 dorsally located tracts (Figure 3C) that had the least
number of contributing PN axons; the mlAPT2 (the equiv-
alent of the dorsal antenno-cerebral tract) and the mIAPT3
(the equivalent of the dorso-medial antenno-cerebral tract)
which bifurcated to project to both the calyces and the lateral
horn (although only a few of the dozens of fibers in the
mlAPT2 projected to the calyces). The mlAPT2 and 3 can
be distinguished from each other due to the relatively small
number of axons in the mIAPT3 compared with the mIAPT?2
(Figure 3C). All 5 tracts are schematized in Figure 3F (the
more ventral mAPT, mlIAPT1, and IAPT) and Figure 3G
(the more dorsal mIAPT2 and mlAPT3).

LNs

Several antibodies were used to identify different potential
transmitters used by LNs in the AL of Neodiprion. As has
been described in many different insect species, there was
a large population of GABA-immunoreactive (GABA-ir)

LNs localized to the cell clusters of each AL (Figure 4A).
Similar to moths (Hoskins et al. 1986; Berg et al. 2009)
and honeybees (Schéfer and Bicker 1986), there were a few
GABA-ir neurites visible in the output tracts (Figure 4B),
suggesting that there are some GABA-ir PNs in the AL of
Neodiprion. Antibodies against the neuropeptide locustata-
chykinin IT (Lom-TK II) (Figure 4C) revealed a population
of approximately 22.4 LNs (£1.5 somata SD, n = 4), and
against FMRFamide (Figure 4D), revealed a population of
56.1 LNs (+2.1 somata SD, n = 4). There were no allatostatin
-ir LNs despite strong labeling of neurons in other brain re-
gions (Figure 4E). This result was surprising as allatostatin-
ir LNs have been described in the ALs of moths (Utz and
Schachtner 2005; Berg et al. 2007, 2009), flies (Carlsson
et al. 2010), and honeybees (Kreissl et al. 2010). Antibodies
against corazonin (Figure 4F) and crustacean cardioactive
peptide (Figure 4G) did not result in the labeling of any AL
LNs, although there was very bright labeling of neurons in
other regions of the brain.

Serotonin, octopamine, dopamine, and
histamine-immunoreactive input to the AL

Labeling against 4 biogenic amines, serotonin (SHT), octop-
amine (OA), dopamine (DA) and histamine (HA), was per-
formed to permit comparison of the aminergic input with the
ALs of Neodiprion with that of other insects. Many glomeruli
of Neodiprion received SHT-ir innervation (Figure 5A),
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Allatostatin | F

FMRFamide

Lom-TKII| D,

Corazonin

Figure 4 LNs of the ALs of Neodiprion. (A) Horizontal section through the AL showing GABA-ir LNs. The cell bodies of GABA-ir LNs in the lateral cell cluster
of the AL are indicated by an asterisk. (B) Several GABA-ir neurites (arrowheads) in the mAPT (bracket) of Neodiprion. (C-D) Locustatachykinin (Lom-TK Il) and
FMRFamide immunolabeling of LNs, respectively. (E-G) Horizontal sections of brains immunolabeled for allatostatin, corazonin, and crustacean cardioactive
peptide (CCAP), respectively. Note the absence of labeling in the ALs and strong labeling in other brain regions. Scale bars = 100 pm. A, anterior; L, lateral;

CC, central complex.

although several glomeruli in the lateral anterior—ventral
portion of the AL received either very little or no SHT-ir in-
nervation (Figure SA,B). There was a large degree of hetero-
geneity in the extent to which each individual glomerulus was
innervated, some receiving only 1 neurite, whereas others re-
ceived several neurites that extended throughout the volume
of the glomerulus (Figure 5A,B). Each AL was innervated by
a centrifugal neuron that projected posterior—dorsally from
the AL (Figure 5C), crossed the dorsal midline (Figure 5D),
and then innervated the contralateral AL. This morphology
was consistent with that of the contralaterally-projecting,
serotonin-immunoreactive deutocerebral (CSD) neuron,
which is widespread throughout the holometabolous (or
complete metamorphosing) insects (Dacks et al. 2006). It
should be noted that each CSD neuron had a small amount
of branching in the ipsilateral AL (Figure 5B), which is a fea-
ture of CSD neurons that varies between species.

The AL of Neodiprion was sparsely innervated by OA-ir
neurites (Figure 6A). Each AL was innervated by at least
one centrifugal neuron that projected up from the subeso-
phageal ganglion (SEG) (Figure 6B,C). Unfortunately, we
were unable to trace the cells any further than the most dor-
sal aspect of the SEG as the neurites became closely associ-
ated with other OA-ir processes (Figure 6C) that form the
“deep” and “‘superficial DUM tracts” originally described
by Watson (1984). The ALs of many insects are innervated
by OA-ir ventral unpaired median (VUM) neurons and we
did observe in the maxillary neuromere of the SEG some
OA-ir VUM neurons (Figure 6D) which projected dorsally
toward the AL before bifurcating around the esophageal
foramen (Figure 6D.E). However, because we were unable

to trace the entirety of the OA-ir neurites innervating the
AL, we can only determine that the SEG is the point of
origin.

Although there are large populations of HA-ir LNs in the
ALs of the aculeate and parasitic Hymenoptera (Dacks et al.
2010), there were no HA-ir LNs in the ALs of Neodiprion
(Figure 7A). There was also no DA-ir observed in the
ALs of Neodiprion (Figure 7B), despite obvious labeling in
neighboring brain regions.

Discussion

The purpose of this study was to examine the ALs of a key
taxon within the Hymenoptera to begin to understand the
neural underpinnings of the diversity of olfactory behavior
of this order. The most primitive Hymenoptera are essen-
tially “moth-like” in their life history strategy. The sawflies
(and other closely related taxa) lay their eggs on a host plant
and leave their larvae to fend for themselves. Over evolution-
ary time, the parasitic Hymenoptera began to inject their
eggs within the more protected environment of a host insect,
thus providing somewhat more in the way of care for their
offspring. Within the aculeate Hymenoptera, eusocial soci-
eties in which sterile workers care for the offspring of one
or a few reproductive individuals evolved multiple times,
thus producing some of the most complex societies on the
planet. All of these distinct shifts in behavioral repertoire
must have associated changes in brain structure, and thus,
this study seeks to be a starting point for the comparison
of the 2 extremes of the behavioral spectrum of the Hyme-
noptera. It is therefore not surprising that many of the

2T0Z ‘s J8qo1nQ uo 1enb Aq /Blo'sfeulnolployxo-aswayo//:dny woiy papeojumoq


http://chemse.oxfordjournals.org/

Characterization of the Sawfly Antennal Lobe 215

Figure 5 Serotonin-immunoreactive innervation of the ALs of Neodiprion.
(A) Horizontal section AL depicting the 5HT-ir innervation of the AL and
a single 5HT-ir cell body (asterisk) in the lateral cell cluster. (B) The more
anterior glomeruli (bracket) receive less 5HT-ir compared with more posterior
glomeruli, demonstrating the heterogeneity in 5HT-ir innervation of the AL.
(C) The 5HT-ir neurons (arrowheads) in each AL project dorso—posteriorly
toward the central complex (CC). (D) The 5HT-ir neurons (arrowheads)
extend past the central complex and cross the dorsal midline before project
anteriorly (arrows) toward the ALs. All scale bars = 50 um.

features of the AL of Neodiprion were similar to those of the
ALs of moths.

Comparing first the input to the glomeruli, we found that
the ORN axons of Neodiprion did not form distinct tracts
(Figure 2A) as in bees and ants and appeared to occupy
the majority of the glomerular volume (Figure 2C). This
was only slightly different than Manduca in which the ORNss
occupy the distal half of each glomerulus to form a “cap”
over the proximal glomerular volume (Oland et al. 1990).
The ORNS of the Aculeata, on the other hand, form distinct
tracts, 4 for honeybees (Suzuki 1975; Flanagan and Mercer
1989; Kirschner et al. 2006) and 6-7 for ants (Zube et al.

Figure 6 Octopamine-immunoreactive innervation of the AlLs of Neo-
diprion. (A) Horizontal section revealing sparse innervation of the ALs by
OA-ir neurites. (B) Saggital section in which OA-ir processes (arrowheads)
can be seen entering the AL. Hatched border delineates the AL in (A) and
(B). (€) Saggital section in which OA-ir processes (arrowheads) that innervate
the AL project up from the SEG. (D) Saggital section of the SEG depicting
projections of 2 VUM neurons (asterisk) toward the deep and superficial
DUM neuron tracts. (E) Higher magnification view of (D) highlighting the
bifurcation (arrowheads) of the VUM neurons around the esophageal
foramen. Al scale bars = 50 um. A, anterior; D, dorsal; L, lateral; P, posterior.

2008; Zube and Rossler 2008; Kelber et al. 2010) that inner-
vate specific subsets of glomeruli and occupy the outer rind
of each glomerulus (Flanagan and Mercer 1989), with the
exception of the glomeruli innervated by the T4 ORN tract
of the honey bee (Galizia et al. 1999; Kirschner et al. 2006).
Another hallmark of the ALs of the aculeate Hymenoptera is
a high number of glomeruli compared with other species. For
instance, honeybees have 163 glomeruli (Galizia and Rossler
2009) and the ant Apterostigma cf. mayri has 630 glomeruli
(Kelber et al. 2009), compared with 43 in Drosophila
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Figure 7 The ALs of Neodiprion receive neither histamine- nor dopamine-
immunoreactive innervation. (A) Horizontal section through the entire brain
of Neodiprion labeled for histamine. Despite labeling in other brain regions,
the Als do not display any histamine-immunoreactive innervation. (B)
Horizontal section of a brain labeled for dopamine. As with histamine, there
was labeling in other brain regions (notably the central complex; CC), but
the ALs were devoid of any dopamine-immunoreactive innervation. All scale
bars = 100 um.

(Stocker et al. 1990; Laissue et al. 1999), 63 in Manduca
(Rospars and Hildebrand 1992), and 44 in Neodiprion.

The output tracts of the PNs of Neodiprion also strongly
resembled those of Manduca (Homberg et al. 1988). There
were a total of 5 PN output tracts; the medial, lateral,
and 3 medio-lateral antenno-protocerebral tracts (mAPT,
IAPT, and mlAPT1-3). The PN output tracts of Neodiprion
were quite similar to moths in terms of their position relative
to other brain structures, their relative widths and their final
destination (with the exception of the dorsal antenno-
cerebral tract of Manduca, which only projects to the lateral
horn). Notably, the mIAPT2 and mlAPT3 of Neodiprion
projected to both the mushroom body calyces and the
lateral horn, whereas all 3 medial output tracts in honeybees
and ants project only to the lateral horn (Abel et al. 2001;
Kirschner et al. 2006; Zube et al. 2008). However, it should
be noted that only a few fibers from the mIAPT?2 tract project
to the dorsal base of the calyces, whereas the majority project
to the lateral horn. Similar to moths, the calyx volume of
Neodiprion was mostly occupied by PN axon terminals
and lacked the obvious lip, basal ring, and collar region
observed in ants and honeybees.

Similar to other insects, the AL LNs of Neodiprion express
a variety of different transmitters. The role of GABAergic
LNsin the AL has been extensively studied in many different
species where they play a role in lateral inhibition, coordina-
tion of PN synchrony, refinement of the temporal response
properties, and gain modulation via presynaptic inhibition
(Waldrop et al. 1987; Christensen et al. 1993; MacLeod
and Laurent 1996; Christensen et al. 1998a, 1998b; Lei
et al. 2002; Perez-Orive et al. 2002; Sachse and Galizia
2002; Wilson and Laurent 2005; Silbering and Galizia
2007; Olsen and Wilson 2008; Root et al. 2008). It is thus
hardly surprising that we observed a large number of
GABA-ir LNs that innervated all the glomeruli of Neodip-
rion (Figure 4A). We also observed GABA-ir processes in
the mAPT suggesting that Neodiprion possesses some
GABA-ir PNs, which likewise have been observed in
Manduca (Hoskins et al. 1986; Berg et al. 2009), honeybee
(Schéfer and Bicker 1986), and Drosophila (Wilson and
Laurent 2005). In addition to GABA, there have been a num-
ber of studies examining the different expression patterns of
neuropeptides among the LNs of the AL (most recently ex-
amined by Hofer et al. 2005; Utz and Schachtner 2005; Berg
et al. 2007, 2009; Settembrini et al. 2008; Ignell et al. 2009;
Carlsson et al. 2010; Kreissl et al. 2010 and reviewed most
recently by Néissel and Homberg 2006). Although little is
known about the functional roles of neuropeptides in the
AL, Drosophila tachykinin-related peptides have been shown
to mediate presynaptic inhibition of ORNs in the Drosophila
AL (Ignell et al. 2009). The distribution of neuropeptides in
the AL of Neodiprion was very similar to those reported in
other insects with the exception of allatostatin which was ab-
sent from the AL, although there was intense labeling of neu-
rons in other brain regions. This was particularly interesting
as both honeybees (Kreissl et al. 2010) and moths (Berg et al.
2009) possess allatostatin-ir LNs that coexpress GABA-ir,
suggesting that this trait was lost in Neodiprion.

In addition to GABAergic LN, the aculeate and parasitic
Hymenoptera also possess a population of HA-ir AL LNs
(Bornhauser and Meyer 1997; Dacks et al. 2010), which
are thought to provide ionotropic (Roeder 2003) inhibitory
input within the honeybee AL (Sachse et al. 2006). The ALs
of both Neodiprion and the sawfly Lophyrotoma zonalis
(Dacks et al. 2010) lack HA-ir LNs, which is similar to
the ALs of moths (Homberg and Hildebrand 1991) and flies
(Pollack and Hofbauer 1991; Buchner et al. 1993; Python
and Stocker 2002). The ALs of other insects are innervated
by one or a few HA-ir neurons (Pirvola et al. 1988;
Bornhauser and Meyer 1997; Loesel and Homberg 1999;
Gebhardt and Homberg 2004; Dacks et al. 2010), but these
neurons do not resemble the large population of HA-ir LNs
in the Hymenoptera. The absence of HA-ir LNs in the sister
taxa of the Hymenoptera suggests that this population of
LNs arose after the divergence of the sawflies. The presence
of an additional population of inhibitory LNs in the
Hymenoptera indicates the need for increased computational
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complexity that may relate to the complexity of the life
history or perhaps the large relative number of glomeruli
per AL.

Aminergic input to the insect AL is frequently of centrif-
ugal origin. These centrifugal neurons are often thought to
signal the broad context of a behavioral state and thus ex-
tend widely throughout the AL. The ALs of many insects
receive SHT-ir input (Kent et al. 1987; Rehder et al. 1987;
Salecker and Distler 1990; Wegerhoff 1999; Hill et al.
2002; Python and Stocker 2002; Settembrini and Villar
2004; Dacks et al. 2006; Tsuji et al. 2007; Zhao and Berg
2009). Although the majority of the complete metamorphos-
ing insects possess AL SHT-ir neurons with the CSD mor-
phology in which the soma resides in the lateral cell
cluster of one AL and the neuron projects to the contralat-
eral AL, the aculeate and parasitic Hymenoptera do not
(Rehder et al. 1987; Dacks et al. 2006; Tsuji et al. 2007).
The ALs of the Parasitica are innervated by a SHT-ir neuron
that is similar to the CSD neuron but does not cross the dorsal
midline (Dacks et al. 2006), and the AL of the Aculeata are
innervated by a SHT-ir neuron that originates in the ventral
nerve cord (Rehder et al. 1987; Dacks et al. 2006; Tsuji et al.
2007). However, Neodiprion possesses SHT-ir neurons with
the CSD morphology, suggesting that the role of SHT in
the AL of Neodiprion may be similar to moths and flies, which
also possess neurons with the CSD morphology. Serotonin
enhances the responses of PNs and LNs in both moths
(Kloppenburg and Hildebrand 1995; Kloppenburg et al.
1999; Hill et al. 2003; Dacks et al. 2008; Barrozo et al.
2010) and Drosophila (Dacks et al. 2009), and SHT has been
implicated as a circadian modulator of olfactory processing
(Linn and Roelofs 1986; Linn et al. 1994; Kloppenburg
et al. 1999; Gatellier et al. 2004). The remarkable change in
the morphology of the 5SHT-ir neurons innervating the
ALs of honeybees, suggests that the role of SHT in the
hymenopteran AL also may have changed dramatically.

The role of OA in the AL has been a matter of great interest
over the last 20 years. Octopamine is thought to serve as the
molecular signal for the occurrence of an appetitive stimulus
during olfactory conditioning in several insects (Mercer and
Menzel 1982; Hammer and Menzel 1998; Farooqui et al.
2003; Schwaerzel et al. 2003; Unoki et al. 2005; Tomchik
and Davis 2009; Gervasi et al. 2010), and the ALs of several
insect species are innervated by OA-ir VUM neurons
(Kreissl et al. 1994; Dacks et al. 2005; Sinakevitch et al.
2005; Sinakevitch and Strausfeld 2006; Schroter et al.
2007; Busch et al. 2009; Busch and Tanimoto 2010). How-
ever, we were unable to definitively determine the source
of OA-ir innervation for the AL of Neodiprion beyond an
origin in the SEG.

Although not as well studied as serotonin and octopamine,
DA-ir has been reported in the ALs of bees (Kirchhof et al.
1999), flies (Chou et al. 2010), and moths (Homberg 1990).
Dopamine-ir was not, however, observed in the ALs of
Neodiprion (Figure 7B). Unfortunately because the morphol-

Characterization of the Sawfly Antennal Lobe 217

ogy of the DA-ir AL neurons has not been characterized in
moths, we could not compare these neurons with those of
honeybees to determine if this trait was lost after Neodiprion
diverged from the rest of the Hymenoptera or if this trait was
lost in the most ancestral hymenopteran and regained after
the sawflies diverged.

Any given morphological feature of an organism is shaped
by the selective pressures of the environment and by the histor-
ical inertia of ancestral traits. Although Neodiprion is a member
of the same order as honeybees and ants, their ALs more closely
resemble those of the moths in terms of ORN innervation
(Figure 2) and PN output tracts (Figure 3) as well as the sero-
tonergic (Figure 5) and histaminergic (Figure 7A) innervation
of the AL are very similar to that of moths. Furthermore, those
features of the Neodiprion AL that differ from moths, the
absence of allatostatin-ir LNs (Figure 3E), and dopaminer-
gic innervation (Figure 7B), also differ from honeybees
suggesting that these traits were lost. This supports the hy-
pothesis that both similarity of life history and phyloge-
netic relatedness contribute to brain structure. Our
results suggest that because the life history of sawflies is
so similar to that of moths, there has been little selective
pressure exerted upon the nervous system to change the
gross anatomical features of the olfactory system com-
pared with their last common ancestor. In comparison,
the aculeate Hymenoptera evolved radically different
life histories compared with the sawflies and thus, their ol-
factory systems have also changed dramatically. By exam-
ining how the brain has changed over evolutionary time,
we can begin to understand what neural features are crit-
ical to information processing and which have become mal-
leable to best suit the selective pressures exerted upon an
organism.
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